

PUBLIC

Code Assessment

of the Omnibridge Version 6.0

Smart Contracts

September 07, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 11

7 Notes 18

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear POA Network Team,

First and foremost we would like to thank you for giving us the opportunity to assess the Omnibridge
Version 6.0. This document outlines the findings, limitations, and methodology of our assessment.

Only two partially corrected findings remain. These findings have been largely mitigated and hence their
original severities no longer reflect the current state. In the current code version miner cooperation is
required to exploit the first finding. Regarding the second finding the attacker no longer has any financial
gain, they can just prevent a regular GSN execution at their own expense.

We hope that this assessment provides valuable findings. We are happy to receive questions and
feedback to improve our service.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Partially Corrected 1

Medium -Severity Findings 3

• Code Corrected 2

• Code Partially Corrected 1

Low -Severity Findings 13

• Code Corrected 11

• Specification Changed 2

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Omnibridge Version 6.0 repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

Omnibridge

V Date Commit Hash Note

1 August 02 2021 68ad223a39bf0c23d4e891f7e25c66aa3f3f99a7 Initial Version

2 August 20 2021 76867baad2884b39e739cebd0ac99cbafe38a395 Second Version

3 September 03 2021 b4935ff2c3b5ac897517af19b6fb626a800eee98 Third Version

Tokenbridge

V Date Commit Hash Note

1 August 06 2021 3519ddb8c2c75a84f1452224103f509a909a0578 Initial Version

2 August 20 2021 e44f4d8bf4fe665c784c7071a77ce635f41b9558 Second Version

For the Omnibridge solidity smart contracts, the compiler version 0.7.5 was chosen. For the
Tokenbridge solidity smart contracts, the compiler version 0.4.24 was chosen.

This report is only concerned with the upgrade from Omnibridge v1.0.0 to Omnibridge v1.1.0-rc1 and
Tokenbridge v5.5.0-rc0 to Tokenbridge v6.0.0-rc0. Further it is restricted to the changes within the
following files:

Omnibridge

• contracts/upgradeable_contracts/BasicOmnibridge.sol

• contracts/upgradeable_contracts/components/common/InterestConnector.sol

• contracts/upgradeable_contracts/components/common/OmnibridgeInfo.sol

• contracts/upgradeable_contracts/ForeignOmnibridge.sol

• contracts/upgradeable_contracts/modules/interest/AAVEInterestERC20.sol

• contracts/upgradeable_contracts/modules/interest/CompoundInterestERC20.sol

• contracts/upgradeable_contracts/Upgradeable.sol

Tokenbridge

• contracts/gsn/BasePaymaster.sol

• contracts/ERC677BridgeToken.sol

• contracts/gsn/BaseRelayRecipient.sol

• contracts/gsn/token_paymaster/TokenPaymaster.sol

• contracts/gsn/utils/GsnEip712Library.sol

• contracts/helpers/AMBBridgeHelper.sol

• contracts/helpers/Erc20ToNativeBridgeHelper.sol

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

• contracts/libraries/ArbitraryMessage.sol

• contracts/PermittableToken.sol

• contracts/upgradeable_contracts/arbitrary_message/AsyncInformationProcessor.sol

• contracts/upgradeable_contracts/arbitrary_message/HomeAMB.sol

• contracts/upgradeable_contracts/arbitrary_message/MessageDelivery.sol

• contracts/upgradeable_contracts/erc20_to_native/CompoundConnector.sol

• contracts/upgradeable_contracts/erc20_to_native/ForeignBridgeErcToNative.sol

• contracts/upgradeable_contracts/GSNForeignERC20Bridge.sol

• contracts/upgradeable_contracts/InterestReceiverBase.sol

• contracts/upgradeable_contracts/InterestReceiverStakeBuyback.sol

• contracts/upgradeable_contracts/InterestReceiverSwapToETH.sol

The erc20token used in GSNForeignERC20Bridge contract is assumed to be Maker DAI token with
18 decimals.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

The Omnibridge upgrade allows tokens that are locked on the foreign side of the bridge to accrue
interest. The InterestConnector contract can be used to select an InterestImplementation
which is then used to invest tokens. There are two implementations currently available, one for
Compound and one for AAVE. Both implementations specify an InterestReceiver which receives the
accrued interest, the Compound connector additionally specifies a CompReceiver to receive the
governance tokens. In order to account for tokens that are not directly stored in the bridge contract, the
_unaccountedBalance function was added, which calculates the balance not stored in the bridge,
e.g., invested tokens. The _releaseTokens function was modified to account for the fact that tokens
may have to be withdrawn from the InterestImplementation in order to release them.

The Tokenbridge upgrade enables GSN functionality, which essentially allows users to execute
transactions despite not being able to pay for gas costs. Instead, they give a relayer a signature, who
executes the transaction on their behalf, under the assumption that the user will repay the gas costs
using tokens in their account.

In order to allow this functionality, there is a TokenPayMaster and a RelayRecipient contract. They
both receive calls from an external RelayHub contract, which does most of the bookkeeping. The
TokenPaymaster first receives a call to the preRelayedCall function, where it can decide to reject
the call. Then the RelayRecipient, in this case the GSNForeignERC20Bridge, is called through a
trusted forwarder contract. Here, the tokens are bridged and partially send to the TokenPaymaster.

Next, the RelayHub calls the postRelayedCall function of the TokenPaymaster. Here, the exact
gas costs are calculated, then the necessary amount of tokens are traded to ETH via uniswap and sent
to the RelayHub. Any remaining bridged tokens are sent to the user.

It is important that the TokenPaymaster correctly estimates how much gas is used after the gas cost
calculation (to send the remaining tokens to the RelayHub and user), otherwise it may consistently send
too little or too much. If it sends too much, then value is lost. If it doesn't pay enough, the paymaster's
balance in the RelayHub will eventually drop below the threshold where it can cover the maximum cost
of a call, meaning the RelayHub will no longer forward the calls.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The Tokenbridge upgrade also unlocks asynchronous message passing, whereby the home chain can
query low-level information about the foreign chain that normally would not be available on
smart-contract level through the JSON-RPC interface.

2.2.1 Trust Assumptions
The interest providers, in particular Aave and Compound, are trusted as they could otherwise attack the
contracts in various ways, e.g., through reentrancy or by simply stealing funds. Their reward tokens are
also trusted not to contain any callbacks that could lead to reentrancies.

The bridged tokens are also trusted as they could otherwise be used to perform reentrancy attacks.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Partially CorrectedInterest Payments Prone to Price Manipulation Attacks

Medium -Severity Findings 1

• Code Partially CorrectedAnyone Can Steal GSN Fees

Low -Severity Findings 0

5.1 Interest Payments Prone to Price Manipulation
Attacks
Security High Version 1 Code Partially Corrected

The InterestReceiverStakeBuyback and InterestReceiverSwapToETH contracts both utilize
Uniswap in order to swap tokens. There is some slippage protection, but no protection against price
manipulation is built in.

Because the payInterest function in the InterestConnector is external and permissionless,
anyone can call it at any time. Therefore, once enough interest accrues, one could take out a flash loan
to manipulate the relevant Uniswap pools and call payInterest to make a profit.

Additionally, even if payInterest weren't permissionless, it is possible for the Uniswap call in
onInterestReceived to fail, leaving the tokens sitting in the InterestReceiver contract. Here, the
onInterestReceived function is external and permissionless, meaning it's once again prone to being
attacked via price manipulation.

Furthermore, assuming the interest payment was not callable by untrusted parties at all, it would still be
possible to manipulate the price by sandwiching that transaction between two others, either by chance or
by collusion with miners.

Code partially corrected:

Only EOA modifier was added to payInterest function, thus no flash loans can be used to manipulate
the pools. The modifier allows calls only when msg.sender == tx.origin.

The calls to uniswap in onInterestReceived in InterestReceiverSwapToETH and
InterestReceiverStakeBuyback contracts now will revert, if uniswap call does so.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

POA Network accepted the risk of transaction front-running and risk of placing a payInterest
transaction between the attacker's transactions. POA Network also accepted the risk of storing other
ERC20 tokens directly on the interest receiver contract.

5.2 Anyone Can Steal GSN Fees
Security Medium Version 1 Code Partially Corrected

In GSN contracts the Forwarder is an intermediate contract which checks the user's signature, handles
user nonces, and then forwards the request.

However, as anyone can observe the user signature in the transaction pool and use it to call the
Forwarder contract directly, some of the protections enforced by the RelayHub are lost. These
protections include that GSN transactions must be triggered by an externally owned account. Instead, the
following attack becomes possible:

• Observe user signature in GSN transaction and front-run with own transaction

• Own transaction:

• Call Forwarder with intercepted signatures to send maxTokensFee to the
TokenPaymaster.

• Call TokenPaymaster with fake inputs to send maxTokensFee to the attacker. This issue is
described in Missing Access Control for postRelayedCall.

Note that users might choose a high value for maxTokensFee as they expect to receive the remaining
value that wasn't used for gas payments. Also note that the attacker's transaction is cheaper than a
regular GSN transaction as no checks within the RelayHub and no execution of preRelayedCall
need to be performed. Hence, the attacker gets more funds than a faithful GSN relayer would have
received.

Code partially corrected:

The fix of the Missing Access Control for postRelayedCall issue makes it possible for attacker only to lock
the maxTokensFee inside the TokenPaymaster. This risk was accepted by the client, since the locked
ERC20 can be withdrawn only by the owner of the contract. Later, lost fees can later manually be
returned to users, according to POA Network.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedMissing Access Control for postRelayedCall

• Code CorrectedOutdated GSN Interface

Low -Severity Findings 13

• Code CorrectedDecimals in GSN Token Handling

• Code CorrectedDelete Statements Can Be Combined

• Code CorrectedEvents on Interest Params Change

• Code CorrectedGas Saving if No Interest Implementation Exists

• Specification ChangedIncorrect Documentation Comments

• Code CorrectedInterest Implementation With Non-Revoked Allowance

• Code CorrectedInterest Implementations Cannot Handle Non-Standard Tokens

• Code CorrectedInterface IInterestImplementation Events

• Specification ChangedMessage Offset Incorrect

• Code CorrectedMinimum Gas Computed Incorrectly

• Code CorrectedNo Claiming of Aave Rewards

• Code CorrectedPotentially Conflicting Getters

• Code CorrectedUnnecessary Balance Query

6.1 Missing Access Control for postRelayedCall
Security Medium Version 1 Code Corrected

The postRelayedCall function of the TokenPaymaster contract is public and allows anyone to call it.
In this function the uniswap router is called and leftover funds are sent back to the user. Thus, this
function modifies the state. Without an access control check that only allows the RelayHub to call it, an
attacker can craft call data that will drain the ERC20 balance of the contract. Note that normally the
contract is not supposed to have an ERC20 balance, however, this can change in situations as described
in Anyone can steal GSN fees.

The preRelayedCall and postRelayedCall functions both have following comment in the official
GSN IPaymaster class:

* MUST be protected with relayHubOnly() in case it modifies state.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The preRelayedCall function does not modify state but it could still make sense to add an access
control check.

Code corrected:

The modifier relayHubOnly was added to preRelayedCall and postRelayedCall.

6.2 Outdated GSN Interface
Design Medium Version 1 Code Corrected

The contracts use an outdated GSN interface in the definition of IPaymaster. In particular the following
differences exist:

• The function getGasLimits should now be called getGasAndDataLimits() and should return
four instead of three values.

• A trustedForwarder function should be implemented.

Furthermore, the RelayData struct has changed. As less context information is available the security
guarantees are weaker.

Code corrected:

The GSN Interface was updated to version 2.2.0.

6.3 Decimals in GSN Token Handling
Design Low Version 1 Code Corrected

When the ForeignBridgeErcToNative is used in Gas Station Network (GSN)-mode, token decimals
are treated unevenly. Generally, as part of this report we assume that as only the DAI tokens is used in
GSN mode, the token decimals will always be 18. And hence token decimals on foreign and home side
will be the same.

However, the ForeignBridgeErcToNative will shift token amounts to account for different decimals
when transferring tokens:

uint256 unshiftMaxFee = _unshiftValue(fee);
uint256 unshiftLeft = _unshiftValue(amount - fee);

Furthermore, sometimes the code does assume that token decimals are the same. As part of the
preRelayedCall the TokenPayMaster estimates the value of the provided tokens by calling:

uint256 potentialWeiIncome = router.getAmountsOut(maxTokensFee, tokenWethPair)[1];

Hence, overall either the shifts can be avoided or they should be consistently performed everywhere.

Code corrected:

The shifts were removed. The XDaiForeignBridge was introduced as a specialized contract to deal
with DAI only.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.4 Delete Statements Can Be Combined
Design Low Version 1 Code Corrected

In the function forceDisable in AAVEInterestERC20.sol and CompoundInterestERC20.sol, an
instance of InterestParams is deleted.

delete params.aToken;
delete params.dust;
delete params.investedAmount;
delete params.minInterestPaid;
delete params.interestReceiver;

Because all fields of the struct are deleted, these delete statements can be combined into:

delete interestParams[_token];

Code corrected:

The statements were combined.

6.5 Events on Interest Params Change
Design Low Version 1 Code Corrected

The CompoundInterestERC20 and AAVEInterestERC20 contracts do not emit any events when
values in interestParams are changed or initialized first time. List of such functions:

• setMinInterestPaid

• setInterestReceiver

• setDust

• enableInterestToken

• setMinCompPaid in CompoundInterestERC20

• setCompReceiver in CompoundInterestERC20

To make monitoring easier it can be helpful to add such events.

Code corrected:

Events were added.

6.6 Gas Saving if No Interest Implementation
Exists
Design Low Version 1 Code Corrected

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

For each token an IInterestImplementation can be chosen inside the ForeignOmnibridge.
When a token is handled this is checked as follows:

IInterestImplementation impl = interestImplementation(_token);
if (Address.isContract(address(impl))) {

In case no IInterestImplementation has been registered the impl value will be the zero address.
Querying the existence of a contract at this address requires caching the account (due to EIP-2929) and
hence incurs non-trivial gas costs. This could be avoided if the check would be modified to first handle
the zero address.

Code corrected:

The more effective address(impl) != address(0) check was introduced.

6.7 Incorrect Documentation Comments
Correctness Low Version 1 Specification Changed

The documentation on the withdraw function in CompoundInterestERC20.sol and
AAVEInterestERC20.sol reads:

/**
 * @dev Withdraws at least the given amount of tokens from the Compound protocol.
 * ...
 * @param _amount minimal amount of tokens to withdraw.
 */
function withdraw(address _token, uint256 _amount) external override onlyMediator {
 InterestParams storage params = interestParams[_token];
 uint256 invested = params.investedAmount;
 uint256 redeemed = _safeWithdraw(_token, _amount > invested ? invested : _amount);
 params.investedAmount = redeemed > invested ? 0 : invested - redeemed;
 IERC20(_token).transfer(mediator, redeemed);
}

However, if the _amount specified is greater than the amount invested, only the amount invested will
actually be redeemed. Therefore, an amount of tokens less than the specified _amount can be
withdrawn, contradicting the documentation.

Additionally, the comment on the _enableInterestToken function in CompoundInterestERC20.sol
reads:

/**
 * ...
 * @param _interestReceiver address of the interest receiver for underlying token and associated COMP tokens.
 * ...
 */
function enableInterestToken(ICToken _cToken, uint96 _dust, address _interestReceiver, uint256 _minInterestPaid) external onlyOwner {
 // ...
}

However, the account that receives COMP tokens is compReceiver, which is set in the constructor.

Lastly, the comment on the _enableInterestToken function in AAVEInterestERC20.sol also
mentions COMP tokens even though no COMP tokens will be handled.

Specification changed:

The comments were fixed and don't have mentioned contradictions anymore.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.8 Interest Implementation With Non-Revoked
Allowance
Design Low Version 1 Code Corrected

When enableInterestToken is called within the CompoundInterestERC20 and
AAVEInterestERC20 contracts, the respective interest implementation approves the lending pool for
the maximum amount of tokens. When forceDisable is called, this allowance is not revoked.

Code corrected:

The allowance is set to 0 in forceDisable function now.

6.9 Interest Implementations Cannot Handle
Non-Standard Tokens
Design Low Version 1 Code Corrected

Both the Compound and AAVE platforms can work with non-standard ERC20 tokens. However, the
CompoundInterestERC20 and AAVEInterestERC20 do not use SafeERC20 functions for transfers
and allowances of the tokens. Hence, they will fail to handle such tokens.

Code corrected:

The SafeERC20 is now used for token transfers. Allowances are handled based on the token type and
the situation.

6.10 Interface IInterestImplementation
Events
Design Low Version 1 Code Corrected

Both CompoundInterestERC20 and AAVEInterestERC20 define the following events:

event PaidInterest(address indexed token, address to, uint256 value);
event ForceDisable(address token, uint256 tokensAmount, uint256 cTokensAmount, uint256 investedAmount);

Since they both also implement IInterestImplementation interface, such events can be defined in
there.

Code corrected:

Events are now defined in IInterestImplementation.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.11 Message Offset Incorrect
Correctness Low Version 1 Specification Changed

The function parseMessage is preceded by a comment about the offsets of the different parts within the
message. It contains:

// offset 104: 20 bytes :: address - contract address to prevent double spending

However the correct offset is 116. The code implements it correctly.

Specification changed:

The comment now has the correct offset of 116.

6.12 Minimum Gas Computed Incorrectly
Correctness Low Version 1 Code Corrected

As part of the AMB a gas limit for the call on the other side can be provided. The provided gas limit is
checked against a minimum gas usage computed based on the number of bytes within a call:

function getMinimumGasUsage(bytes _data) public pure returns (uint256 gas) {
 // From Ethereum Yellow Paper
 // 68 gas is paid for every non-zero byte of data or code for a transaction
 // Starting from Istanbul hardfork, 16 gas is paid (EIP-2028)
 return _data.length.mul(16);
}

However, as the call is made from within a smart contract, these costs do not apply. They only apply to
initial calldata of a transaction. The dominating cost, namely the cost for the CALL itself (increased by
EIP-2929) is not considered.

Code corrected:

The new code version uses a fixed value according to the new gas prices as minimum gas requirement.

6.13 No Claiming of Aave Rewards
Design Low Version 1 Code Corrected

Aave issues rewards for participants of the system which can be claimed using the claimRewards
function. However, the AAVEInterestERC20 contract currently does not collect any of these rewards.

Code corrected:

The functionality to claim the rewards from AAVE's IncentivesController contract was added to the
AAVEInterestERC20 contract.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.14 Potentially Conflicting Getters
Design Low Version 1 Code Corrected

The ForeignBridgeErcToNative contract has getter functions that return potentially conflicting
information:

• erc20token(): This function describes the ERC20 token that is bridged on the foreign side. It
reads the return value from storage.

• daiToken(): This function also describes the ERC20 token that is bridged on the foreign side. It is
set to a constant address.

Code corrected:

The XDaiForeignBridge was introduced as a specialized contract to deal with DAI only.

6.15 Unnecessary Balance Query
Design Low Version 1 Code Corrected

In the function forceDisable in AAVEInterestERC20.sol, aToken.balanceOf is queried in order to
withdraw all invested funds:

uint256 aTokenBalance = aToken.balanceOf(address(this));
// try to redeem all aTokens
try lendingPool().withdraw(_token, aTokenBalance, mediator) {
 aTokenBalance = 0;
} catch {
 aToken.transfer(mediator, aTokenBalance);
}

This balance query is not necessary, because according to the documentation of
LendingPool.withdraw(), one can set the balance to type(uint256).max (or uint256(-1)) to
withdraw the entire balance. In case the withdraw fails, the balance could be queried inside the catch
block in order to transfer the aTokens to the mediator.

/**
 * ...
 * @param amount The underlying amount to be withdrawn
 * - Send the value type(uint256).max in order to withdraw the whole aToken balance
 * ...
**/
function withdraw(address asset, uint256 amount, address to) external returns (uint256);

Code corrected:

The updated withdraw code does not have unnecessary balance query.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Changing the Number of Required Signatures
Note Version 1 Acknowledged

AMB messages require a certain number of signatures. However, this threshold can be changed. If
changed, a number of issues might occur. For example, it is impossible to submit additional signatures if
a message has already been marked as processed due to sufficient signatures. However, additional
signatures would be required to successfully handle the message on the other side of the bridge.

Acknowledged:

POA Network acknowledged that such issues could arise and presented a work-around where one side
of the bridge temporarily rejects new requests.

7.2 Hardcoded GSN Gas Costs
Note Version 1 Acknowledged

The GSN-related contracts contains a number of constants describing the gas costs of certain functions
or operations. Past hard-forks have changed the gas costs of EVM operations and future hard-forks are
expected to introduce further changes. Hence, the constants might no longer work in the future.
However, they have been chosen with some margin so that fairly dramatic gas cost changes would have
to occur for these constants to stop working.

Acknowledged:

The client acknowledged the issue, but it is out of their control as it is a general issue with GSN.

7.3 Validation of Used dataType
Note Version 1 Acknowledged

AMB messages can carry a dataType. Together with other components, this value of part of the
message header created within the _packHeader function. Here, this uint256 value is being packed
into a single byte. No length check are performed on this value, while length checks are performed on
some of the other values. Hence, a length check could be added. However, with currently used
hard-coded values no issue will arise.

Acknowledged:

POA Network plans such improvements for future version with more complicated data types.

POA Network - Omnibridge Version 6.0 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.2 System Overview
	2.2.1 Trust Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Interest Payments Prone to Price Manipulation Attacks
	5.2 Anyone Can Steal GSN Fees

	6 Resolved Findings
	6.1 Missing Access Control for postRelayedCall
	6.2 Outdated GSN Interface
	6.3 Decimals in GSN Token Handling
	6.4 Delete Statements Can Be Combined
	6.5 Events on Interest Params Change
	6.6 Gas Saving if No Interest Implementation Exists
	6.7 Incorrect Documentation Comments
	6.8 Interest Implementation With Non-Revoked Allowance
	6.9 Interest Implementations Cannot Handle Non-Standard Tokens
	6.10 Interface IInterestImplementation Events
	6.11 Message Offset Incorrect
	6.12 Minimum Gas Computed Incorrectly
	6.13 No Claiming of Aave Rewards
	6.14 Potentially Conflicting Getters
	6.15 Unnecessary Balance Query

	7 Notes
	7.1 Changing the Number of Required Signatures
	7.2 Hardcoded GSN Gas Costs
	7.3 Validation of Used dataType

