n QI.ICI ntStCImp Security Assessment Certificate

August 3rd 2020 — Quantstamp Verified

XDai Easy Staking

This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type Smart contract
Auditors Sung-Shine Lee, Research Engineer Y -
Sebastian Banescu, Senior Research
Engineer
Jake Goh Si Yuan, Security Auditor
~ High Risk
Timeline 2020-07-16 through 2020-08-03
EVM Muir Glacier
Languages Solidity
Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, ~ Medium Risk
Manual Review
Specification README.md
Documentation Quality High
Test lit ‘
est Quality High Low Risk
Source Code
Repository Commit
easy-staking-contracts diflic
None ebecd Informational
None /24a1
7 Undetermined
Goals * Do functions have proper access

control logic?

* Are there centralized components o Unresolved

which users should be aware of?

Do the contracts adhere to best

practices?
Acknowledged
 Are the calculations and funds

distribution correct?
Total Issues 9 (8 Resolved)
High Risk Issues 1 (1 Resolved)
Medium Risk Issues 1 (1 Resolved) 0 Unresclved

1 Acknowledged
Low Risk Issues 4 (4 Resolved) 8 Resolved
Informational Risk Issues 3 (2 Resolved) Resolved
Undetermined Risk Issues O (O Resolved)
@ Mitigated

i'--.‘- q# *-ﬁ* -"-._..

| ALL ISSUES |
{ ADDRESSED |

L] L
N, -] {l o o
5 e
1'|.‘.‘. '}F

E DG umentation E
L

§_ Addmessed _§
)

The issue puts a large number
of users’ sensitive information
at risk, or is reasonably likely to
lead to catastrophic impact for
client’s reputation or serious
financial implications for client
and users.

The issue puts a subset of
users’ sensitive information at
risk, would be detrimental for
the client’s reputation if
exploited, or is reasonably
likely to lead to moderate
financial impact.

The risk is relatively small and
could not be exploited on a
recurring basis, or is a risk that
the client has indicated is low-
impact in view of the client’s
business circumstances.

The issue does not post an
immediate risk, but is relevant
to security best practices or
Defence in Depth.

The impact of the issue is
uncertain.

Acknowledged the existence of
the risk, and decided to accept
it without engaging in special
efforts to control it.

The issue remains in the code
but is a result of an intentional
business or design decision. As
such, it is supposed to be
addressed outside the
programmatic means, such as:
1) comments, documentation,
README, FAQ; 2) business
processes; 3) analyses showing
that the issue shall have no
negative consequences in
practice (e.g., gas analysis,
deployment settings).

Adjusted program
implementation, requirements
or constraints to eliminate the
risk.

Implemented actions to

minimize the impact or
likelihood of the risk.

https://github.com/xdaichain/easy-staking-contracts/blob/master/README.md
https://github.com/xdaichain/easy-staking-contracts

. Eindi

In general, the code is well written, well documented, and well tested. We have, nevertheless, identified one high and one medium severity issue. The
high severity issue points out the inadequate implementation of reentrancy guard which still allows reentrancy. The medium refers to the unchecked

external calls.

ID Description Severity Status

QSP-1 Reentrancy Guard not implemented properly A High Fixed

QSP-2 Unchecked external calls ~ Medium Fixed

QSP-3 Withdrawal Unlock Duration can be set very small Fixed

QSP-4 Inconsistent use of re-entrancy guard Fixed

QSP-5 Privileged Roles and Ownership Fixed

QSP-6 Loss of Precision in Arithmetic Calculations Fixed

QSP-7 Underspecific claimTokens leads to winner-takes-all Fixed

QSP-8 Trapped Tokens and Temporary Denial of Service due to overflow of Acknowledged

LastDepositlds[address]]
QSP-9 Block Timestamp Manipulation Fixed

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

 Transaction-ordering dependence

« Timestamp dependence

* Mishandled exceptions and call stack limits

« Unsafe external calls

« Integer overflow / underflow

« Number rounding errors

« Reentrancy and cross-function vulnerabilities
« Denial of service / logical oversights

 Access control

« Centralization of power

« Business logic contradicting the specification
« Code clones, functionality duplication

« Gas usage

* Arbitrary token minting

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality

of the smart contract.
i. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is

exercised when we run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control

based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.
Toolset
The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

e Slither v0.6.12

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: sLlither .s

Find

QSP-1 Reentrancy Guard not implemented properly

Severity: High Risk
Status: Fixed

File(s) affected: EasyStaking. sol

Description: The _setLocked function description indicates that it should prevent reentrancy. However, it does not check whether the lock is being held
before and thus diverts from typical mutex implementations. This causes different kinds of problems:

* In the deposit() where setLocked() is called, there is no check whether Locked is set to true. Therefore, this method does not stop

reentrancy.

* InonTokenTransfer(), it checks the lock and only deposits when it is unlocked. Note that it doesn't fail the transaction when the lock is true.

It is possible to create a mismatch between contracts as the contract that calls this function might think the deposit succeeded.

Recommendation: Use the reentrancy guard from OpenZeppelin.

Update: The team informed us that setLocked() is not to guard reentrancy and its main functionality is to avoid the _deposit() to be called
repeatedly during the ERC677 token transfer. The team updated the comment in ebecd and we consider the implementation reasonable.

QSP-2 Unchecked external calls

Severity: Medium Risk

Status: Fixed

File(s) affected: EasyStaking.sol

Description: In calls token.transfer, token.mint and token.transferFrom, the return result from these external calls to token are not
checked. In case of possible flawed implementation or unthrown failure there can be inconsistent state between token and EasyStaking. For example,
if the token.transfer() failed in L448, the balances are still updated in the contract at L437 and it would emit an Withdrawn event that has

actually failed.
Slither findings:

« EasyStaking.deposit(uint256,uint256) (EasyStaking.sol#207-213) ignores return value by token.transferFrom(msg.sender,address(this), amount)
(EasyStaking.sol#211)

» EasyStaking.claimTokens(address,address) (EasyStaking.sol#282-298) ignores return value by token.transfer(_to,amount) (EasyStaking.sol#292)

« EasyStaking. withdraw(address,uint256,uint256,bool) (EasyStaking.sol#4+32-450) ignores return value by
token.transfer(liquidityProvidersRewardAddress,feeValue) (EasyStaking.sol#446)

« EasyStaking. withdraw(address,uint256,uint256,bool) (EasyStaking.sol#432-450) ignores return value by token.transfer(_sender,amount)
(EasyStaking.sol#448)

« EasyStaking. mint(address,uint256,uint256) (EasyStaking.sol#458-469) ignores return value by token.mint(address(this),total)
(EasyStaking.sol#463)

» EasyStaking. mint(address,uint256,uint256) (EasyStaking.sol#458-469) ignores return value by
token.transfer(liquidityProvidersRewardAddress,total.sub(userShare)) (EasyStaking.sol#466)

Recommendation: Always check the return values of external calls and act accordingly.
Update: The issue is fixed in ebecd according to the recommendation.

QSP-3 Withdrawal Unlock Duration can be set very small

Status: Fixed

File(s) affected: EasyStaking. sol

Description: In setWithdrawalUnlockDuration(), if the unlock duration is small, e.g. 1 block, while users can still technically withdraw their funds,
in practice, it might be very hard for them to do so.

Recommendation: Consider requiring the duration to be sufficient for end-users to be able to easily withdraw their funds.
Update: The issue is fixed in ebecd via adding a requirement so that the unlock duration has to be greater than 1 hour.

https://github.com/crytic/slither
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.5.1/contracts/utils/ReentrancyGuard.sol

QSP-L Inconsistent use of re-entrancy guard

Status: Fixed

File(s) affected: EasyStaking. sol

Description: The contract occasionally makes external calls to IERC20Mintable token address. It is assumed that this is the STAKE token contract
and is generally trusted. This token state variable is also immutable.

However, in function deposit(uint256, uint256) L207 we see that the mutex is used to protect function call token.transferFrom. Thus the

trust model here can be viewed as there may possibly be some reentrancy possibilities from the external calls to token. Under this trust model, all
external calls to token should consider the possibility of reentrancy.

There are further non-view calls to token through functions such as token.transfer, token.mint. We suggest using the re-entrancy guard with
those calls to be consistent and secure.

Recommendation: Use reentrancy guard in a consistent way.
Update: On ebecd, the original description is related to QSP-1 and thus is considered to be fixed. However, that means that contract as its current form

is not protected explicitly by re-entrancy guard. We suggest to implement a proper re-entrancy guard on _withdraw() and _deposit().
Update: On 724al, the issue is resolved by implementing re-entrancy guard on withdraw() and deposit().

QSP-5 Privileged Roles and Ownership

Status: Fixed

File(s) affected: EasyStaking. sol

Description: Smart contracts will often have owner variables to designate the person with special privileges to make modifications to the smart
contract. However, this centralization of power needs to be made clear to the users, especially when the owner is given higher level of privileges.

The owner of the EasyStaking contract is able to change several important parameters of the contract repeatedly at any moment in time. These
parameters influence:

1. the accrued emissions: setTotalSupplyFactor and setSigmoidParameters
2. the amount of fees that are charged for instant withdrawals: setFee
3. the time when withdrawals with no fees can be performed: setWithdrawalLockDuration and setWithdrawalUnlockDuration

4. the address where liquidity provider rewards (fees) are transferred to: setLiquidityProvidersRewardAddress.

Additionally, the owner can claim unsupported tokens accidentally sent to the contract: claimTokens.
The owner could even front-run end-users by calling functions such as setFee() when an end-user makes a forced withdrawal via
makeForcedWithdrawal (). Similar front-running scenarios can happen with the other functions mentioned above as well.

Recommendation: This should be made clear to the end-users via the documentation. Currently, the functions that the owner can call are listed in the
README.md, however, the consequences of these functions may not be clear to end-users.

Update: The issue is partially mitigated in ebecd by adding a 7-day period between the request to set a new value and the final setting of this value.
Still, we recommend to communicate what the owner can do in the README to completely mitigate the issue.
Update: On 724al, the team updated the README and resolved the issue.

QSP-6 Loss of Precision in Arithmetic Calculations

Status: Fixed

File(s) affected: EasyStaking. sol

Description: Solidity integer division might truncate. As a result, performing a multiply before a division might lead to loss of precision. There are 2
occurrences in getAccruedEmission on L397 and L398.

total = _amount.mul (MAX_EMISSION RATE).div(1l ether).mul(timePassed).div(YEAR);
userShare = _amount.mul (userEmissionRate).div(1l ether).mul(timePassed).div(YEAR);

Recommendation: Move the division after the multiplication.
Update: Fixed in ebecd according to recommendation.

QSP-7 Underspecific claimTokens leads to winner-takes-all

Status: Fixed

File(s) affected: EasyStaking. sol

Description: The owner-only function claimTokens is intended to help retrieve tokens and native token sent to the contract address, to be forwarded to
a _to payable address.

Currently, the function calculates the amount of tokens/native token to be forwarded by taking the entire balance received unknowingly by the contract
address. If this was intentional as the forwarding address is meant to be an intermediary that allowed for further deliberate distribution, then the issue is

no more.
However, if not, despite onl yOwner access control to this function, this may lead to some unintentional and intentional flaws.

Exploit Scenario:

1. Alice has sent 10 XDai to the contract. She tries to claim the XDais back to her, and the owner steps in to help.

2. During the time before the owner is able to send a transaction calling claimTokens(address(0), address(Alice)), Bob also sent some
XDa1i to the contract.

3. The owner, not able to distinguish Bob's transaction before sending out his own, sends out Alice and Bob's total XDais to Alice.

Recommendation: Set another parameter uint256 _amount to claimTokens.
Update: Fixed in ebecd according to recommendation.

QSP-8 Trapped Tokens and Temporary Denial of Service due to overflow of LastDepositIds[address]

Status: Acknowledged

Description: LastDepositIds[address]] is used as a way to track the different unique deposits IDs for a given address. In deposit() and
withdraw(), the deposit ID O is treated as a special case as a validation for wrong ID. Thus funds would be locked if they are deposited with ID 0.

At the same time, given that actions of withdraw and deposit require the validation of depositld <= lastDepositlds[address], it can be
considered a temporary denial of service if LastDepositIds[address] is set to @ through overflow. It is only temporary as it can be circumvented by
bringing deposits into the account again and increasing LastDepositIds[address].

Exploit Scenario:

1. Increase LastDepositlds[address] to MAXINT(uint256) through deposit() or external token transfer onTokenTransfer().

2. Perform external token transfer onTokenTransfer(), triggering overflow and bringing LastDepositlds[_sender] to 0.

Recommendation: Before allowing ++lLastDepositlds[sender], or pass responsibility to deposit to validate the for _1d the same way as
_withdraw, we recommend to perform validation on onTokenTransfer either with SafeMath which would reject further deposits or simply fix the
max ID and prevent the ID from overflowing.

Be mindful that this is setting the expectation that MAXINT(uint256) is the id that all deposits beyond that number will default into, if solution is to
prevent overflow from happening. (or reject further deposits).

Update: The team informed us that "We exclude the possibility of creating such a large number of deposits". We consider this a reasonable assumption.

QSP-9 Block Timestamp Manipulation

Status: Fixed

File(s) affected: EasyStaking. sol

Description: Projects may rely on block timestamps for various purposes. However, it's important to realize that miners individually set the timestamp of
a block, and attackers may be able to manipulate timestamps for their own purposes. If a smart contract relies on a timestamp, it must take this into
account. Here, the user emission rate is computed based on the block.timestamp, which could be affected by malicious miners.

Recommendation: Add an explicit warning in the end-user documentation indicating that expiration timestamps can have a 900 second error.
Update: This is fixed in ebecd according to the recommendation.

Adherence to Specification

The implementation adheres to the documentation provided.

Code Documentation

The Ethereum code generally adheres to the inline comments and provided documentation. Code comments were included throughout.

Adherence to Best Practices

1. InEasyStaking.sol, withdraw(), when the amount is 0, the function withdraws everything for the user. This is not intuitive and may become
a source of error if other projects try to integrate with this project. We recommend using MAX_UINT256 as a special value as it is clearer and would

not appear in normal calculations.

2. In EasyStaking. sol the following parameters of the event are not indexed:

« Deposited, L33: amount, balance, accruedEmission and prevDepositDuration.

« Withdrawn, L59: amount, fee, balance, accruedEmission and LastDepositDuration.
« FeeSet, L74: value and sender

« WithdrawalLockDurationSet, L81: value and sender

« WithdrawalUnlockDurationSet, L88: value and sender

« TotalSupplyFactorSet, L95 :valueandsender

« SigmoidParametersSet, L104: a, b, c and sender

« LiquidityProvidersRewardAddressSet, L111: value and sender

3. EasyStaking.sol, L396: The require statement here should be replaced with an assert statement, because it is never expected for that
invariant to be false. (Fixed in ebecd)

4. EasyStaking.sol, L429: Should add the comment about how the special case where the function performs differently when _amount is 0. (Fixed
in ebecd)

Test Results

Test Suite Results

Contract: EasyStaking
initialize
v/ should be set up correctly (64ms)
v/ fails if any of parameters is incorrect (1504ms)
deposit
should deposit (232ms)
should accrue emission (462ms)
should deposit using an old id (1846ms)
fails if deposit value is zero (65ms)
fails if wrong deposit id (62ms)
onTokenTransfer
v/ should deposit (143ms)
v/ should accrue emission (598ms)
v/ should deposit using an old id (1442ms)
v
v

SSSKS

fails if deposit value is zero (104ms)
fails if not a token address (74ms)

makeForcedWithdrawal
should withdraw (712ms)
should withdraw with accrued emission (335ms)
should withdraw part and accrue emission (315ms)
should accrue emission for different users from 1 address (1554ms)
fails if trying to withdraw more than deposited (392ms)
fails if wrong deposit id (238ms)
fails if zero balance (215ms)
should withdraw entire deposit by several parts (1693ms)
should withdraw the same amount (726ms)
requestWithdrawal

v/ should request (207ms)

v/ fails if wrong deposit id (58ms)
makeRequestedWithdrawal

v should withdraw (550ms)

v/ should fail if not requested (140ms)

v/ should fail if too early (226ms)

v/ should fail if too late (199ms)
totalStaked

v/ should be calculated correctly (2235ms)
setFee

v/ should set (97ms)

v/ fails if not an owner (53ms)

v/ fails if greater than 1 ether (89ms)
setWithdrawal LockDuration

v/ should set (208ms)

v/ fails if not an owner (154ms)

v/ fails if equal to zero (67ms)
setWithdrawalUnlockDuration

v should set (112ms)

v/ fails if not an owner (80ms)

v/ fails if equal to zero (5@ms)
setTotal SupplyFactor

v/ should set (107ms)

v/ fails if not an owner (76ms)

v/ fails if greater than 1 ether (55ms)
setSigmoidParameters

v/ should set (104ms)

v/ fails if not an owner (50ms)

v/ fails if wrong values (111ms)
setLiquidityProvidersRewardAddress

v should set (235ms)

v/ fails if not an owner (161ms)

v/ fails if equal to zero (52ms)

v/ fails if equal to the address of EasyStaking contract (50ms)
claimTokens

v/ should claim tokens (579ms)

v/ should claim STAKE tokens (602ms)

v/ should claim ether (239ms)

NSNSSNSNANANANSN

v/ should claim and send ether even if receiver reverts it (388ms)
v/ fails if not an owner (56ms)
v/ fails if invalid recipient (102ms)
getSupplyBasedEmissionRate
v/ should be calculated correctly (343ms)
/ can't be more than 7.5% (302ms)
getAccruedEmission
v/ should be calculated correctly (306ms)
ExtendedMath
v/ sqrt should be within the gas limit and calculated correctly (4775ms)
v/ sqrt of 0-3 (260ms)
v/ pow2 of @ (58ms)

59 passing (1m)

Code Coverage

The code is well covered by the tests with all the important branches being covered and extensive assertions.

File % Stmts % Branch % Funcs % Lines

contracts/ 99.3 91.11 100 99. 26
EasyStaking.sol 99.3 91.11 100 99. 25
TERC20Mintable.sol 100 100 100 100
Sacrifice.sol 100 100 100 100
contracts/lib/ 96.67 87.5 100 100
ExtendedMath. sol 100 87.5 100 100
Sigmoid.sol 94.12 87.5 100 100
contracts/mocks/ 100 /5 100 100
ERC677Mock. sol 100 75 100 100
EasyStakingMock. sol 100 100 100 100
ExtendedMathMock. sol 100 100 100 100
ReceiverMock. sol 100 100 100 100
All files 98.96 89.47 100 99.45

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the
security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential

vulnerability that was not within the scope of the review.

Contracts

/8d0f022f0/7/9afd6e8071e67758al5e0aal/bl89dd2cal8fef/efdde®51766aa ./contracts/EasyStaking.sol

01c571355f45ab0db20dedb6eb4da8cO90fefdl19£f48688fdla/6/8b9fa’33a091e6 ./contracts/Sacrifice.sol

Uncovered Lines

382

4e4d16fead83d2fe/783492¢c5£f95/dcda22ed4ec924f4e/7a5157a2ed9019b632f ./contracts/IERC20Mintable.sol

fabca94e5245834f£fd919a39a8b8e2919bda5bd55e9bbc2fadf9a9eba’9e534b ./contracts/lib/ExtendedMath. sol

b98a3/cf6ed4/d/730fcc4f265£5920ced4/72£819c6218e76029a35c40febc5df59 . /contracts/lib/Sigmoid. sol

8441319cd35b/beBac5d0a93bc5b8401523558ccbb664bebbd8b8c/0ebBa’366511 . /contracts/mocks/ERC677Mock. sol

3aeb4b12470£381631b29bd25293bb88a05d8838d9564a4b1a32a090b6b5ab69c . /contracts/mocks/ExtendedMathMock. sol

£f410676dca0£f0125014£d138e4/b/6c61da’3220314543392ee2060beb2a652 ./contracts/mocks/EasyStakingMock. sol

bffa38500954e66d804f3bed4/£277/bd0f6b9D740a£86993ee5£240728bbb3c/3 . /contracts/mocks/ReceiverMock. sol

Tests

49c60ac3946139d1b96ab/b0fed4ed40339ed62d24522fc5abaaeea’/£fad918al10c . /test/EasyStaking.test.js

Changelog

« 2020-07-27 - Initial report
« 2020-08-03 - Final report

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a
mission to help boost the adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal
verification, static analysis, and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects
worldwide to perform cost-effective smart contract security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove
security assessment services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community
initiatives such as the Ethereum Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of
Technology) reflect our commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise
by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the
internet or other means, and assumes no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement
with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such
hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that
Quantstamp are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or
entity for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the use of third-
party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated
by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor
inclusive of all vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or
use, including but not limited to any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain
technology remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond the programming language, or other programming aspects that could present security risks. A report does not indicate the endorsement of any
particular project or team, nor guarantee its security. No third party should rely on the reports in any way, including for the purpose of making any
decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the implied warranties
of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked
websites, any websites or mobile applications appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring
any transaction between you and any third-party providers of products or services. As with the purchase or use of a product or service through any
medium or in any environment, you should use your best judgment and exercise caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT,
ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

n Quantstamp’

XN

XDai Easy Staking Audit

TGS

