
August 3rd 2020 — Quantstamp Verified

XDai Easy Staking

This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type Smart contract

Auditors Sung-Shine Lee, Research Engineer
Sebastian Banescu, Senior Research
Engineer
Jake Goh Si Yuan, Security Auditor

Timeline 2020-07-16 through 2020-08-03

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification,
Manual Review

Specification README.md

Documentation Quality High

Test Quality High

Source Code
Repository Commit

easy-staking-contracts d1f41c

None ebecd

None 724a1

Goals Do functions have proper access
control logic?

•

Are there centralized components
which users should be aware of?

•

Do the contracts adhere to best
practices?

•

Are the calculations and funds
distribution correct?

•

Total Issues 9 (8 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 1 (1 Resolved)

Low Risk Issues 4 (4 Resolved)

Informational Risk Issues 3 (2 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

High Risk The issue puts a large number
of users’ sensitive information
at risk, or is reasonably likely to
lead to catastrophic impact for
client’s reputation or serious
financial implications for client
and users.

Medium Risk The issue puts a subset of
users’ sensitive information at
risk, would be detrimental for
the client’s reputation if
exploited, or is reasonably
likely to lead to moderate
financial impact.

Low Risk The risk is relatively small and
could not be exploited on a
recurring basis, or is a risk that
the client has indicated is low-
impact in view of the client’s
business circumstances.

Informational The issue does not post an
immediate risk, but is relevant
to security best practices or
Defence in Depth.

Undetermined The impact of the issue is
uncertain.

Unresolved Acknowledged the existence of
the risk, and decided to accept
it without engaging in special
efforts to control it.

Acknowledged The issue remains in the code
but is a result of an intentional
business or design decision. As
such, it is supposed to be
addressed outside the
programmatic means, such as:
1) comments, documentation,
README, FAQ; 2) business
processes; 3) analyses showing
that the issue shall have no
negative consequences in
practice (e.g., gas analysis,
deployment settings).

Resolved Adjusted program
implementation, requirements
or constraints to eliminate the
risk.

Mitigated Implemented actions to
minimize the impact or
likelihood of the risk.

https://github.com/xdaichain/easy-staking-contracts/blob/master/README.md
https://github.com/xdaichain/easy-staking-contracts

Summary of Findings

In general, the code is well written, well documented, and well tested. We have, nevertheless, identified one high and one medium severity issue. The

high severity issue points out the inadequate implementation of reentrancy guard which still allows reentrancy. The medium refers to the unchecked

external calls.

ID Description Severity Status

QSP-1 Reentrancy Guard not implemented properly High Fixed

QSP-2 Unchecked external calls Medium Fixed

QSP-3 Withdrawal Unlock Duration can be set very small Low Fixed

QSP-4 Inconsistent use of re-entrancy guard Low Fixed

QSP-5 Privileged Roles and Ownership Low Fixed

QSP-6 Loss of Precision in Arithmetic Calculations Low Fixed

QSP-7 Underspecific leads to winner-takes-allclaimTokens Informational Fixed

QSP-8 Trapped Tokens and Temporary Denial of Service due to overflow of
lastDepositIds[address]

Informational Acknowledged

QSP-9 Block Timestamp Manipulation Informational Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality

of the smart contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions
provided to Quantstamp describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is

exercised when we run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control
based on the established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.6.12• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: sslither .

Findings

QSP-1 Reentrancy Guard not implemented properly

Severity: High Risk

FixedStatus:

File(s) affected: EasyStaking.sol

The function description indicates that it should prevent reentrancy. However, it does not check whether the lock is being held

before and thus diverts from typical mutex implementations. This causes different kinds of problems:

Description: _setLocked

In the where is called, there is no check whether is set to . Therefore, this method does not stop
reentrancy.

• deposit() _setLocked() locked true

In , it checks the lock and only deposits when it is unlocked. Note that it doesn't fail the transaction when the lock is .
It is possible to create a mismatch between contracts as the contract that calls this function might think the deposit succeeded.

• onTokenTransfer() true

Use the from OpenZeppelin.Recommendation: reentrancy guard

: The team informed us that is not to guard reentrancy and its main functionality is to avoid the to be called

repeatedly during the ERC677 token transfer. The team updated the comment in and we consider the implementation reasonable.

Update setLocked() _deposit()
ebecd

QSP-2 Unchecked external calls

Severity: Medium Risk

FixedStatus:

File(s) affected: EasyStaking.sol

In calls , and , the return result from these external calls to are not

checked. In case of possible flawed implementation or unthrown failure there can be inconsistent state between and . For example,

if the failed in L448, the balances are still updated in the contract at L437 and it would emit an event that has

actually failed.

Description: token.transfer token.mint token.transferFrom token
token EasyStaking

token.transfer() Withdrawn

Slither findings:

EasyStaking.deposit(uint256,uint256) (EasyStaking.sol#207-213) ignores return value by token.transferFrom(msg.sender,address(this),_amount)
(EasyStaking.sol#211)

•

EasyStaking.claimTokens(address,address) (EasyStaking.sol#282-298) ignores return value by token.transfer(_to,amount) (EasyStaking.sol#292)•

EasyStaking._withdraw(address,uint256,uint256,bool) (EasyStaking.sol#432-450) ignores return value by
token.transfer(liquidityProvidersRewardAddress,feeValue) (EasyStaking.sol#446)

•

EasyStaking._withdraw(address,uint256,uint256,bool) (EasyStaking.sol#432-450) ignores return value by token.transfer(_sender,amount)
(EasyStaking.sol#448)

•

EasyStaking._mint(address,uint256,uint256) (EasyStaking.sol#458-469) ignores return value by token.mint(address(this),total)
(EasyStaking.sol#463)

•

EasyStaking._mint(address,uint256,uint256) (EasyStaking.sol#458-469) ignores return value by
token.transfer(liquidityProvidersRewardAddress,total.sub(userShare)) (EasyStaking.sol#466)

•

Always check the return values of external calls and act accordingly.Recommendation:

The issue is fixed in according to the recommendation.Update: ebecd

QSP-3 Withdrawal Unlock Duration can be set very small

Severity: Low Risk

FixedStatus:

File(s) affected: EasyStaking.sol

In , if the unlock duration is small, e.g. 1 block, while users can still technically withdraw their funds,

in practice, it might be very hard for them to do so.

Description: setWithdrawalUnlockDuration()

Consider requiring the duration to be sufficient for end-users to be able to easily withdraw their funds.Recommendation:

The issue is fixed in via adding a requirement so that the unlock duration has to be greater than 1 hour.Update: ebecd

https://github.com/crytic/slither
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.5.1/contracts/utils/ReentrancyGuard.sol

QSP-4 Inconsistent use of re-entrancy guard

Severity: Low Risk

FixedStatus:

File(s) affected: EasyStaking.sol

The contract occasionally makes external calls to address. It is assumed that this is the token contract

and is generally trusted. This state variable is also immutable.

Description: IERC20Mintable token STAKE
token

However, in function L207 we see that the mutex is used to protect function call . Thus the

trust model here can be viewed as there may possibly be some reentrancy possibilities from the external calls to . Under this trust model, all

external calls to should consider the possibility of reentrancy.

deposit(uint256, uint256) token.transferFrom
token

token
There are further non-view calls to through functions such as , . We suggest using the re-entrancy guard with

those calls to be consistent and secure.

token token.transfer token.mint

Use reentrancy guard in a consistent way.Recommendation:

On , the original description is related to and thus is considered to be fixed. However, that means that contract as its current form

is not protected explicitly by re-entrancy guard. We suggest to implement a proper re-entrancy guard on and .

Update: ebecd QSP-1
_withdraw() _deposit()

On , the issue is resolved by implementing re-entrancy guard on and .Update: 724a1 withdraw() _deposit()

QSP-5 Privileged Roles and Ownership

Severity: Low Risk

FixedStatus:

File(s) affected: EasyStaking.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart

contract. However, this centralization of power needs to be made clear to the users, especially when the is given higher level of privileges.

Description: owner
owner

The owner of the contract is able to change several important parameters of the contract repeatedly at any moment in time. These

parameters influence:

EasyStaking

1. the accrued emissions: andsetTotalSupplyFactor setSigmoidParameters

2. the amount of fees that are charged for instant withdrawals: setFee

3. the time when withdrawals with no fees can be performed: andsetWithdrawalLockDuration setWithdrawalUnlockDuration

4. the address where liquidity provider rewards (fees) are transferred to: .setLiquidityProvidersRewardAddress

Additionally, the owner can claim unsupported tokens accidentally sent to the contract: .claimTokens
The owner could even front-run end-users by calling functions such as when an end-user makes a forced withdrawal via

. Similar front-running scenarios can happen with the other functions mentioned above as well.

setFee()
makeForcedWithdrawal()

This should be made clear to the end-users via the documentation. Currently, the functions that the owner can call are listed in the

README.md, however, the consequences of these functions may not be clear to end-users.

Recommendation:

The issue is partially mitigated in by adding a 7-day period between the request to set a new value and the final setting of this value.

Still, we recommend to communicate what the owner can do in the README to completely mitigate the issue.

Update: ebecd

On , the team updated the and resolved the issue.Update: 724a1 README

QSP-6 Loss of Precision in Arithmetic Calculations

Severity: Low Risk

FixedStatus:

File(s) affected: EasyStaking.sol

Solidity integer division might truncate. As a result, performing a multiply before a division might lead to loss of precision. There are 2

occurrences in on L397 and L398.

Description:

getAccruedEmission

total = _amount.mul(MAX_EMISSION_RATE).div(1 ether).mul(timePassed).div(YEAR);
userShare = _amount.mul(userEmissionRate).div(1 ether).mul(timePassed).div(YEAR);

Move the division after the multiplication.Recommendation:

Fixed in according to recommendation.Update: ebecd

QSP-7 Underspecific leads to winner-takes-allclaimTokens

Severity: Informational

FixedStatus:

File(s) affected: EasyStaking.sol

The owner-only function is intended to help retrieve tokens and native token sent to the contract address, to be forwarded to

a payable address.

Description: claimTokens
_to

Currently, the function calculates the amount of tokens/native token to be forwarded by taking the entire balance received unknowingly by the contract

address. If this was intentional as the forwarding address is meant to be an intermediary that allowed for further deliberate distribution, then the issue is

no more.

However, if not, despite access control to this function, this may lead to some unintentional and intentional flaws.onlyOwner

Exploit Scenario:

1. Alice has sent 10 to the contract. She tries to claim the s back to her, and the steps in to help.XDai XDai owner

2. During the time before the is able to send a transaction calling , Bob also sent some

to the contract.

owner claimTokens(address(0), address(Alice))
XDai

3. The , not able to distinguish Bob's transaction before sending out his own, sends out Alice and Bob's total s to Alice.owner XDai

Set another parameter to .Recommendation: uint256 _amount claimTokens
Fixed in according to recommendation.Update: ebecd

QSP-8 Trapped Tokens and Temporary Denial of Service due to overflow of lastDepositIds[address]

Severity: Informational

AcknowledgedStatus:

is used as a way to track the different unique deposits IDs for a given address. In and

, the deposit ID is treated as a special case as a validation for wrong ID. Thus funds would be locked if they are deposited with ID .

Description: lastDepositIds[address] deposit()
withdraw() 0 0
At the same time, given that actions of and require the validation of , it can be

considered a temporary denial of service if is set to through overflow. It is only temporary as it can be circumvented by

bringing deposits into the account again and increasing .

withdraw deposit depositId <= lastDepositIds[address]
lastDepositIds[address] 0

lastDepositIds[address]

Exploit Scenario:

1. Increase to through or external token transfer .lastDepositIds[address] MAXINT(uint256) deposit() onTokenTransfer()

2. Perform external token transfer , triggering overflow and bringing to .onTokenTransfer() lastDepositIds[_sender] 0

Before allowing , or pass responsibility to to validate the for the same way as

, we recommend to perform validation on either with which would reject further deposits or simply fix the

max ID and prevent the ID from overflowing.

Recommendation: ++lastDepositIds[_sender] _deposit _id
_withdraw onTokenTransfer SafeMath

Be mindful that this is setting the expectation that is the that all deposits beyond that number will default into, if solution is to

prevent overflow from happening. (or reject further deposits).

MAXINT(uint256) id

The team informed us that "We exclude the possibility of creating such a large number of deposits". We consider this a reasonable assumption.Update:

QSP-9 Block Timestamp Manipulation

Severity: Informational

FixedStatus:

File(s) affected: EasyStaking.sol

Projects may rely on block timestamps for various purposes. However, it's important to realize that miners individually set the timestamp of

a block, and attackers may be able to manipulate timestamps for their own purposes. If a smart contract relies on a timestamp, it must take this into

account. Here, the user emission rate is computed based on the , which could be affected by malicious miners.

Description:

block.timestamp

Add an explicit warning in the end-user documentation indicating that expiration timestamps can have a 900 second error.Recommendation:

This is fixed in according to the recommendation.Update: ebecd

Adherence to Specification

The implementation adheres to the documentation provided.

Code Documentation

The Ethereum code generally adheres to the inline comments and provided documentation. Code comments were included throughout.

Adherence to Best Practices

1. In , , when the is , the function withdraws everything for the user. This is not intuitive and may become
a source of error if other projects try to integrate with this project. We recommend using as a special value as it is clearer and would
not appear in normal calculations.

EasyStaking.sol _withdraw() _amount 0
MAX_UINT256

2. In the following parameters of the event are not indexed:EasyStaking.sol

, : , , and .Deposited L33 amount balance accruedEmission prevDepositDuration•

, : , , , and .Withdrawn L59 amount fee balance accruedEmission lastDepositDuration•

, : andFeeSet L74 value sender•

, : andWithdrawalLockDurationSet L81 value sender•

, : andWithdrawalUnlockDurationSet L88 value sender•

, value sender`TotalSupplyFactorSet L95: and•

, : , , andSigmoidParametersSet L104 a b c sender•

, : andLiquidityProvidersRewardAddressSet L111 value sender•

3. , : The statement here should be replaced with an statement, because it is never expected for that
invariant to be false. (Fixed in)
EasyStaking.sol L396 require assert

ebecd

4. , : Should add the comment about how the special case where the function performs differently when is . (Fixed
in)
EasyStaking.sol L429 _amount 0
ebecd

Test Results

Test Suite Results

Contract: EasyStaking
initialize

✓ should be set up correctly (64ms)
✓ fails if any of parameters is incorrect (1504ms)

deposit
✓ should deposit (232ms)
✓ should accrue emission (462ms)
✓ should deposit using an old id (1846ms)
✓ fails if deposit value is zero (65ms)
✓ fails if wrong deposit id (62ms)

onTokenTransfer
✓ should deposit (143ms)
✓ should accrue emission (598ms)
✓ should deposit using an old id (1442ms)
✓ fails if deposit value is zero (104ms)
✓ fails if not a token address (74ms)

makeForcedWithdrawal
✓ should withdraw (712ms)
✓ should withdraw with accrued emission (335ms)
✓ should withdraw part and accrue emission (315ms)
✓ should accrue emission for different users from 1 address (1554ms)
✓ fails if trying to withdraw more than deposited (392ms)
✓ fails if wrong deposit id (238ms)
✓ fails if zero balance (215ms)
✓ should withdraw entire deposit by several parts (1693ms)
✓ should withdraw the same amount (726ms)

requestWithdrawal
✓ should request (207ms)
✓ fails if wrong deposit id (58ms)

makeRequestedWithdrawal
✓ should withdraw (550ms)
✓ should fail if not requested (140ms)
✓ should fail if too early (226ms)
✓ should fail if too late (199ms)

totalStaked
✓ should be calculated correctly (2235ms)

setFee
✓ should set (97ms)
✓ fails if not an owner (53ms)
✓ fails if greater than 1 ether (89ms)

setWithdrawalLockDuration
✓ should set (208ms)
✓ fails if not an owner (154ms)
✓ fails if equal to zero (67ms)

setWithdrawalUnlockDuration
✓ should set (112ms)
✓ fails if not an owner (80ms)
✓ fails if equal to zero (50ms)

setTotalSupplyFactor
✓ should set (107ms)
✓ fails if not an owner (76ms)
✓ fails if greater than 1 ether (55ms)

setSigmoidParameters
✓ should set (104ms)
✓ fails if not an owner (50ms)
✓ fails if wrong values (111ms)

setLiquidityProvidersRewardAddress
✓ should set (235ms)
✓ fails if not an owner (161ms)
✓ fails if equal to zero (52ms)
✓ fails if equal to the address of EasyStaking contract (50ms)

claimTokens
✓ should claim tokens (579ms)
✓ should claim STAKE tokens (602ms)
✓ should claim ether (239ms)

✓ should claim and send ether even if receiver reverts it (388ms)
✓ fails if not an owner (56ms)
✓ fails if invalid recipient (102ms)

getSupplyBasedEmissionRate
✓ should be calculated correctly (343ms)
✓ can't be more than 7.5% (302ms)

getAccruedEmission
✓ should be calculated correctly (306ms)

ExtendedMath
✓ sqrt should be within the gas limit and calculated correctly (4775ms)
✓ sqrt of 0-3 (260ms)
✓ pow2 of 0 (58ms)

59 passing (1m)

Code Coverage

The code is well covered by the tests with all the important branches being covered and extensive assertions.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 99.3 91.11 100 99.26

EasyStaking.sol 99.3 91.11 100 99.25 382

IERC20Mintable.sol 100 100 100 100

Sacrifice.sol 100 100 100 100

contracts/lib/ 96.67 87.5 100 100

ExtendedMath.sol 100 87.5 100 100

Sigmoid.sol 94.12 87.5 100 100

contracts/mocks/ 100 75 100 100

ERC677Mock.sol 100 75 100 100

EasyStakingMock.sol 100 100 100 100

ExtendedMathMock.sol 100 100 100 100

ReceiverMock.sol 100 100 100 100

All files 98.96 89.47 100 99.45

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the
security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential
vulnerability that was not within the scope of the review.

Contracts

78d0f022f079afd6e8071e67758a15e0aa17b189dd2ca28fef7efdde051766aa ./contracts/EasyStaking.sol

01c571355f45ab0db20ded6eb4da8c90fefd19f48688fd1a7678b9fa33a091e6 ./contracts/Sacrifice.sol

4e4d16fea083d2fe783492c5f957dcda22ed4ec924f4e7a5157a2ed9019b632f ./contracts/IERC20Mintable.sol

fabca94e5245834ffd919a39a8b8e2919bda5bd5e9bbc02fadf9a9eba39e534b ./contracts/lib/ExtendedMath.sol

b98a37cf6e47d730fcc4f265f5920ce472f819c6218e76029a35c40fe6c5df59 ./contracts/lib/Sigmoid.sol

8441319cd35b7be0ac5d0a93bc5b840152358ccb664be6bd8b8c70eb0a366511 ./contracts/mocks/ERC677Mock.sol

3aeb4b12470f381631b29bd25293bb88a05d8838d9564a4b1a32a090b6b5a69c ./contracts/mocks/ExtendedMathMock.sol

f410676dc0a00f0125014fd138e47b76c61da3220314543392ee2060beb2a652 ./contracts/mocks/EasyStakingMock.sol

bffa38500954e66d804f3be47f277bd0f6b9b740af86993ee5f240728bbb3c73 ./contracts/mocks/ReceiverMock.sol

Tests

49c60ac3946139d1b96ab7b0fe4e40339ed62d24522fc5abaaeea7fad918a10c ./test/EasyStaking.test.js

Changelog

2020-07-27 - Initial report•

2020-08-03 - Final report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a

mission to help boost the adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal

verification, static analysis, and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects

worldwide to perform cost-effective smart contract security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove

security assessment services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community

initiatives such as the Ethereum Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of

Technology) reflect our commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise

by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the

internet or other means, and assumes no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement

with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such

hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that

Quantstamp are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or

entity for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that

Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the extent to

which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the use of third-

party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated

by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor

inclusive of all vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or

use, including but not limited to any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain

technology remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas

beyond the programming language, or other programming aspects that could present security risks. A report does not indicate the endorsement of any

particular project or team, nor guarantee its security. No third party should rely on the reports in any way, including for the purpose of making any

decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in

connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the implied warranties

of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or

information linked to, called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked

websites, any websites or mobile applications appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring

any transaction between you and any third-party providers of products or services. As with the purchase or use of a product or service through any

medium or in any environment, you should use your best judgment and exercise caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT,

ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED

UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

XDai Easy Staking Audit

